IMPACT OF HYDROELECTRIC DEVELOPMENT OF THE UPPER REACHES OF IRRAWADDY RIVER ON THE LOWER REACHES

Reporter: Ma Jianwei

China Institute of Water Resource and Hydropower Research

Home

About IWHR

Research

International Partnership

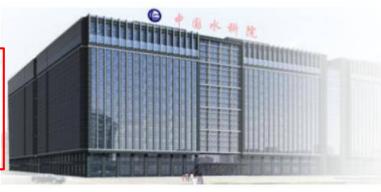
Publications

Who's Who

Careers

About IWHR

- News and Events
- Special Coverage
- Introduction
- Organization
- Presidents
- History
- **Annual Reports**
- **IWHR** in Brochure
- **IWHR** in Video
- Links and Contacts


http://www.iwhr.com/IWHR-English/index.htm

China Institute of Water Resources and Hydropower Research (IWHR) is situated in the western part of Beijing, consisting of south campus and north campus. IWHR has its Daxing Experimental Base located in the south suburb of Beijing Municipality and another two departments located outside Beijing, namely the Department of water Resources for Pastoral Areas in Huhhot and the Department of Mechanical and Electrical Research in Tianjin.

The history of IWHR can be traced back to the establishment of the first Hydraulic

Laboratory in Tianiin in 1933. Over 60 years of evolution since its establishment in 1958. IWHR has now become the largest comprehensive research institute at the top level in the field of water resources and hydroelectric power in China. At present

IWHR has over 1,300 staff members, 12

research departments and 32 laboratories. The total land area of the institute covers 480,000 m².

IWHR has built a professionally excellent team with 2 academicians of Chinese Academy of Sciences and 5 academicians of Chinese Academy of Engineering.

Several secretariats of the Chinese committees of international organizations are stationed in IWHR. A considerable number of senior experts of IWHR have assumed important positions in international

BACKGROUND

D&Q

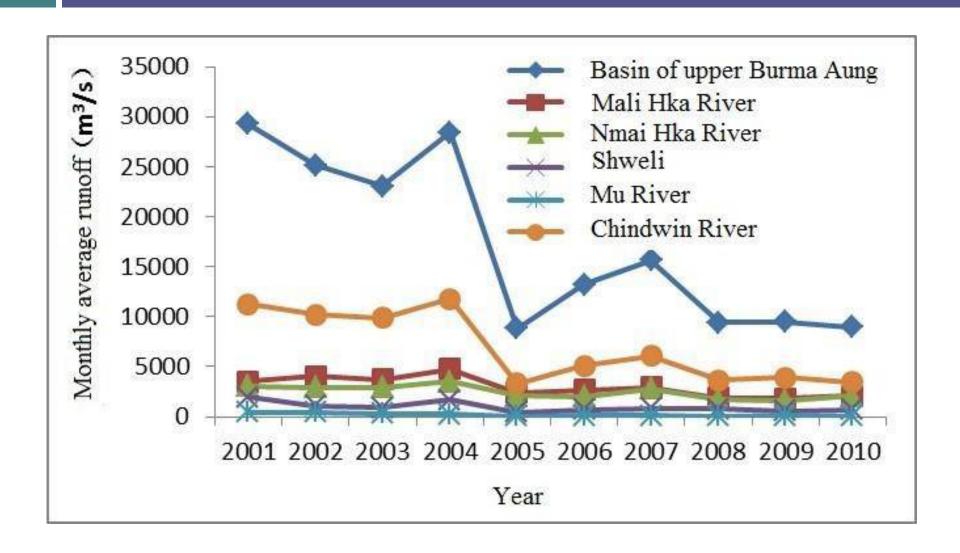
- The MOEP(1) recommended to carry out the impact of upstream hydroelectric development on the lower reaches in 2010
- A serious lack of basic information on the drainage basin of Irrawaddy River
- The conventional approach for modeling analysis is very difficult.

M&O

- Focusing on the use of the satellite remote sensing techniques
- To obtain the land utilization, precipitation, river channel morphology, information on the natural change of estuarine ecological systems
- To analyzing the nature evolution process of the drainage basin
- Using remote sensing to drive hydrological simulation

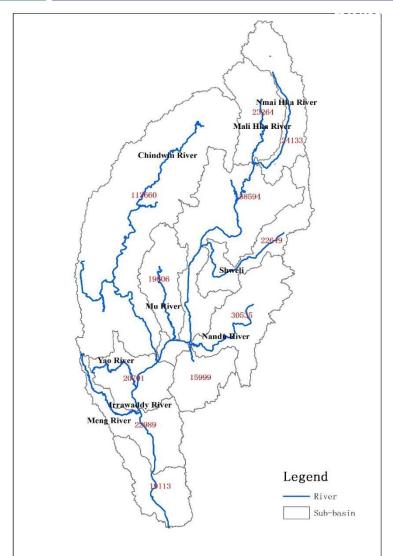
MAIN WORKS:

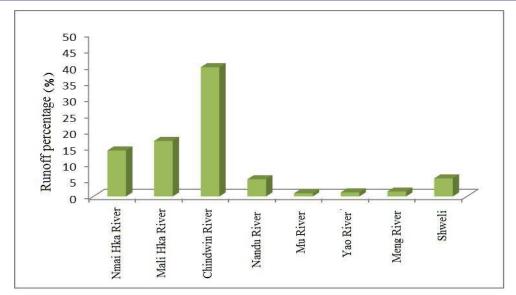
- 1 Analysis of the current runoff of Irrawaddy River Basin
- 2 Remote Sensing Survey on Land Utilization
- Change of the natural circumstances of Irrawaddy river basin
- Impact of Hydroelectric Development of the Upper Reaches of Irrawaddy River on the Lower Reaches
- Flood control benefits of Hydroelectric Development of the Upper Reaches of Irrawaddy River


1 Analysis of the current runoff of Irrawaddy River Basin

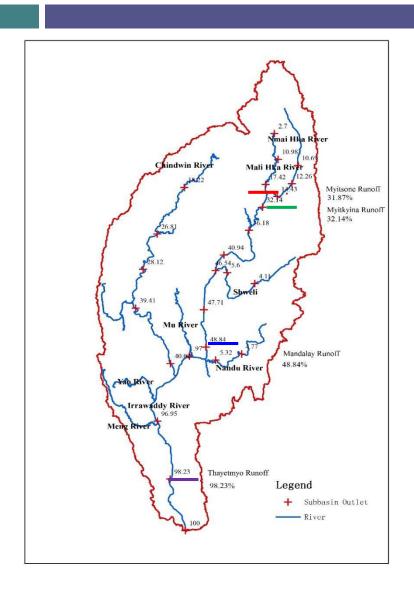
Method: This study selected the current international widely used distributed hydrological model SWAT to simulate the precipitation runoff process.

Data: daily precipitation TRMM satellites from 2001 to 2011


- □ Annual runoff from 2001 to 2010
- □ Runoff of the main tributary
- □ Runoff of each main river section


1.1 Annual runoff from 2001 to 2010

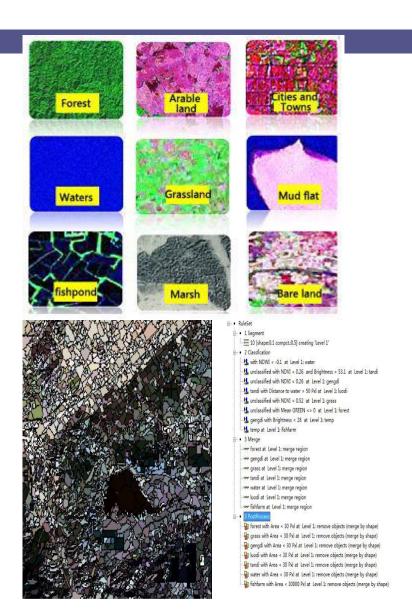
1.2 Runoff of the main tributary


Annual runoff proportion of tributaries in Irrawaddy River

Name	Area (km²)	Sub-basins contained	Area percentage
Nmai Hka River	24132.9	3、4、8	14.15
Mali Hka River	23263.93	1, 2, 6	17.09
Chindwin River	113659.9	5, 13, 14, 15, 16, 21, 22, 24, 25, 26, 27, 37	39.78
Nandu River	30535.15	28、35	5.3
Mu River	19806.38	29	0.99
Yao River	20700.87	40	1.26
Meng River	22988.79	41	1.52
Shweli	22648 66	19, 20	5 56

1.3 Runoff of each main river section

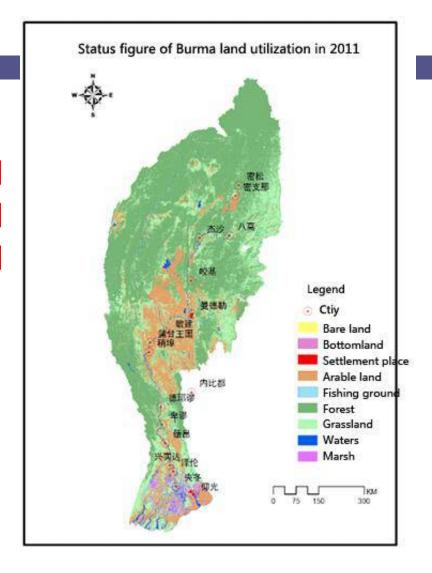
- □ Runoff proportion of each cross sections
 - Myitsone 31.87%
 - Myitkyina 32.14%
 - Mandalay 48.84%
 - Thayetmyo 98.23%


MAIN WORKS:

- Analysis of the current runoff of Irrawaddy River Basin
- Remote Sensing Survey on Land Utilization
- Change of the natural circumstances of Irrawaddy river basin
- Impact of Hydroelectric Development of the Upper Reaches of Irrawaddy River on the Lower Reaches
- Flood control benefits of Hydroelectric Development of the Upper Reaches of Irrawaddy River

2 Remote Sensing Survey on Land Utilization

□ Survey methods


- Image integration
- NDVI Vegetation Index
- NDWI Water Index
- Quantitative Threshold Segmentation
- Supervised Classification
- Visual Interpretation with GE
- Field Survey

Analysis of image interpretation and results

verification

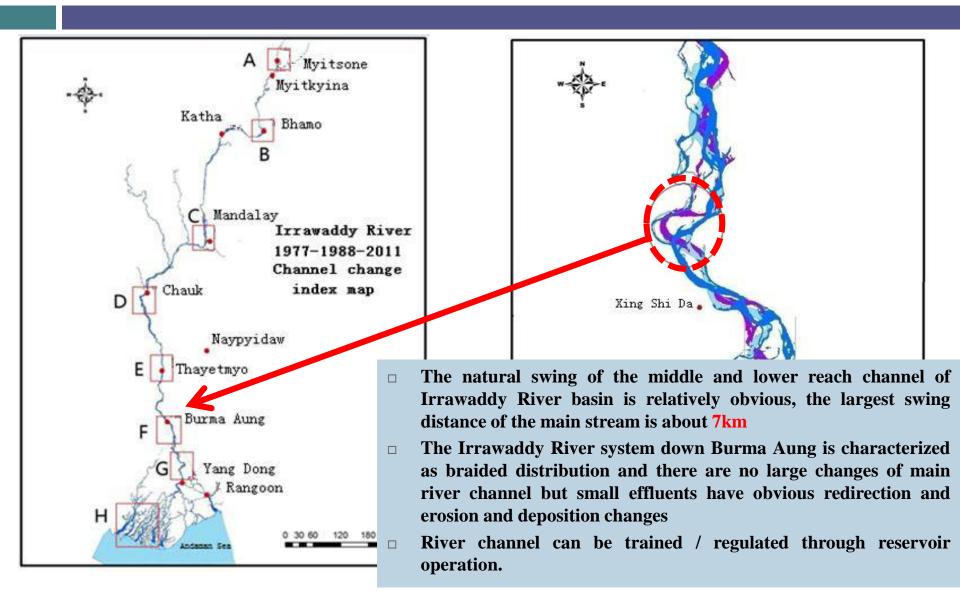
Category	Code	Area (km²)	Proportion to the drainage basin area (%)
Arable land	1	92977.22	21.32
Forest	2	23178.00	53.15
Grassland	3	87169.01	19.99
Waters	4	6087.35	1.44
Bottomland	5	6291.88	1.40
Settlement place	6	3207.52	0.74
Fishing ground	7	855.43	0.20
Marsh	8	4614.14	1.06
Bare land	9	3078.86	0.71
Total		436064.40	100.00

Analysis of image interpretation and results verification

- Investigation method: The investigation combines the line transect method with the private visits
- Investigation tragets: River channel, Land use/Land cover, Bio-circumstances, farming methods on farmland, irrigation method, key ecological protection objectives, social economy and cultural customs
- The Joint investigation lasted seven days, covered a total of nearly 3,000 km

Analysis of image interpretation and results verification

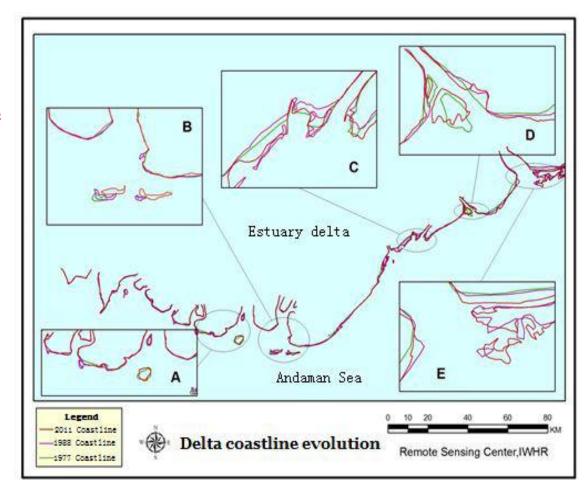
Analysis of image interpretation and results verification


The land utilization/coverage characteristics:

- The main land types within the drainage basin are woodland, cultivated land and grassland, the three types account for 94.46% of the total area of the drainage basin.
- Within the drainage basin of Irrawaddy River has lush vegetation, and the vegetation here has vertical zonality and horizontal zonality.
- Paddy field and dry land mainly lacated in low-lying flat plains
- Grassland mainly distributed in the area between the cultivated land and the woodland, more sporadic and scattered in the spatial form
- Eshoals and sandbanks distributed in both sides of the river channel of Irrawaddy River and the estuarine delta
- The places for settlement are mainly distributed in the lower reaches of Irrawaddy River, fewer in the gorge area in the upper reaches of Myitsone

MAIN WORKS:

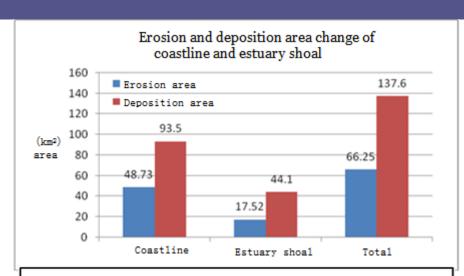
- Analysis of the current runoff of Irrawaddy River Basin
- Remote Sensing Survey on Land Utilization
- Change of the natural circumstances of Irrawaddy river basin
- Impact of Hydroelectric Development of the Upper Reaches of Irrawaddy River on the Lower Reaches
- Flood control benefits of Hydroelectric Development of the Upper Reaches of Irrawaddy River

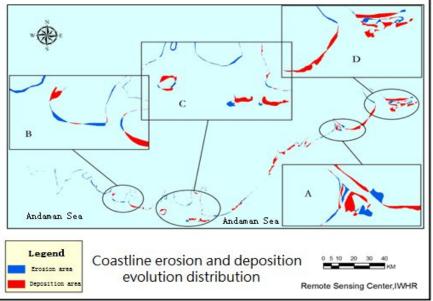

3.1 Evolution of the river channel under natural circumstances

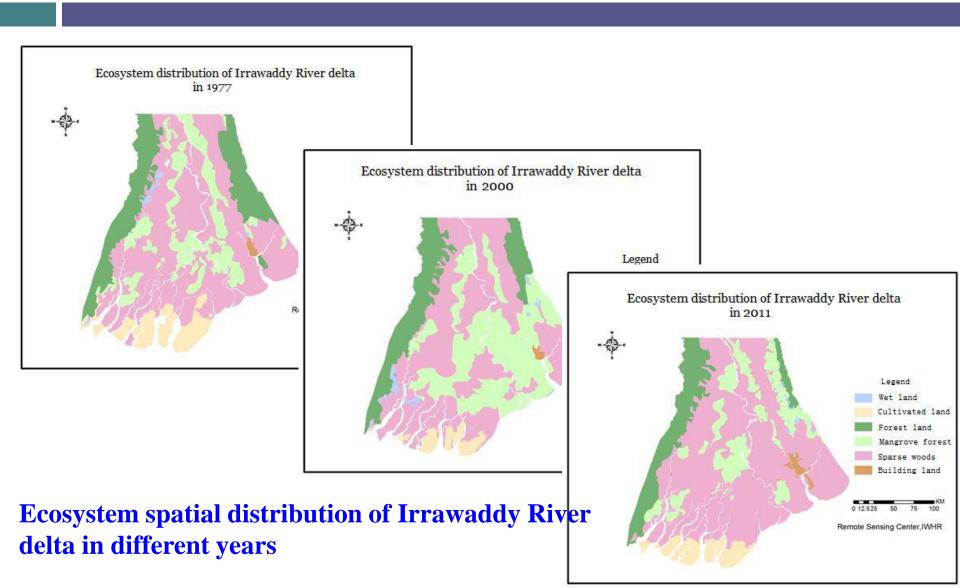
3.2 Erosion and deposition of the natural river basin

		l erosion and ea from end of 2001 (km²)	Erosion and deposition area	Annual average
	Erosion	Deposition	differentials (km²)	(km²)
Myitsone-Katha	96.71	115.78	+19.07	0.79
Katha-Mandalay	151.80	149.95	-1.85	-0.08
Mandalay-Chauk	131.44	154.88	+23.44	0.98
Chauk- Thayetmyo	153.23	103.24	-49.99	-2.08
Thayetmyo- Burma Aung	93.14	47.52	-45.62	-1.90
Burma Aung- estuary	359.00	780.46	+421.46	17.56
Total	985.32	1351.83	+366.51	15.27

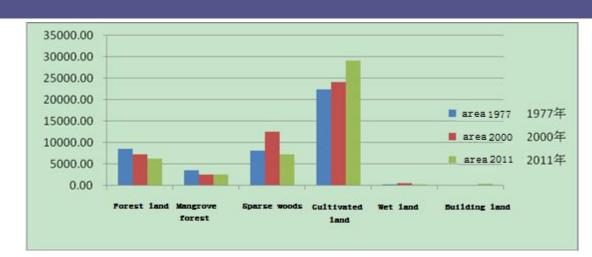
- □ In the recent 40 years, the configuration and the position of the delta coastline and the estuary shoal all change slowly
- Coastline change at the estuary of various braided rivers is relatively obvious.
 the beach near the coastline is extending towards the sea to 2 km in the maximum(C and E)



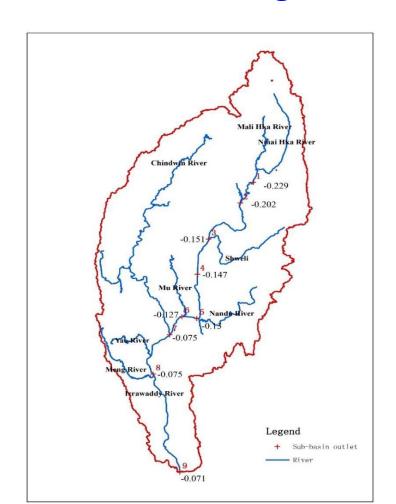

Configuration evolution of the delta coastline


□ In recent 40 years, the erosion area of the delta coastline and the estuary shoal is 66.25km², the deposition area is 137.6km².

■ The main process is deposition, the erosion and deposition difference value is 71.35km².

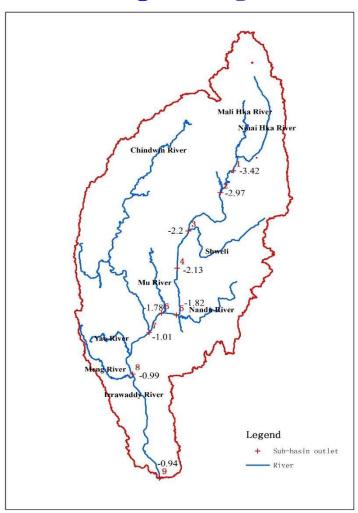

Erosion and deposition evolution	Erosion (km ²)	Deposition (km ²)	Difference value (km ²)
Coastline	48.73	93.5	+44.77
Estuary shoal	17.52	44.1	+26.58
Total	66.25	137.6	+71.35

- ☐ In the recent 40 years, the crop land and residential area of the delta district are continuously increased.
- ☐ The area of wet land, forest land and grass land are gradually reduced.

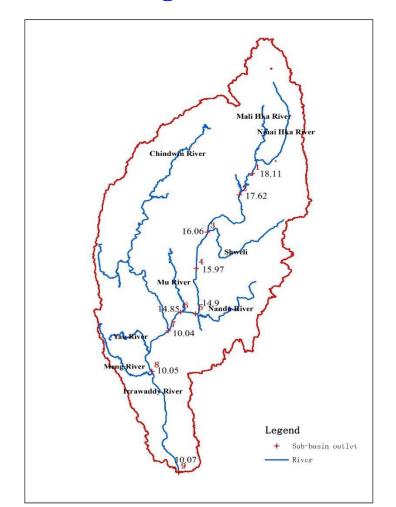

Evolution of the estuary delta 'Ecosystem

Land category La	Land	Area (km²)			Increased or reduced area of	Increased or reduced area of	Increased or reduced area of
name	category	In 1977	In 2000	In 2011	2000 compared to 1977 (km ²)	2011 compared to 2000 (km ²)	2011 compared to 1977 (km ²)
Forest land	1	8584.96	7309.82	6191.20	-1275.14	-1118.62	-2393.76
Sparse woods	2	8095.01	12515.41	7187.62	4420.40	-5327.79	-907.39
Mangrove forest	3	3601.10	2601.97	2541.73	-999.13	-60.24	-1059.37
Cultivated land	4	22347.90	24000.11	29043.52	1652.21	5043.41	6695.62
Wet land	5	337.69	467.78	221.19	130.09	-246.59	-116.50
Urban land	6	180.02	251.60	461.42	71.58	209.82	281.40
Total		45646.68	45646.68	45646.68	0.00	0.00	0.00

MAIN WORKS:


- Analysis of the current runoff of Irrawaddy River Basin
- Remote Sensing Survey on Land Utilization
- Change of the natural circumstances of Irrawaddy river basin
- Impact of Hydroelectric Development of the Upper Reaches of Irrawaddy River on the Lower Reaches
- Flood control benefits of Hydroelectric Development of the Upper Reaches of Irrawaddy River

Annual runoff change after dam establishment


- The annual runoff change after dam establishment is very small.
- Myitkyina station is only -0.229% and in Mandalay only -0.130%. After the afflux of the largest tributary Chindwin River, the impact decreases to -0.075%.
- It is very little to Irrawaddy River having an annual runoff of 486 billion m³ or so.

Runoff change in High Flow Period after dam establishment

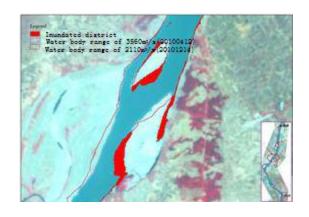
- Effect of the dam is to reduce flood peak and adjust flood.
- Myitkyina monthly average runoff will decrease 3.42%, Besides, reservoir reserves 0.85 billion m³ flood control storage capacity for Myitkyina city, which has a significant influence on the flood control.
- Mandalay only decreases 1.82%, and the effect decreases to about 1% after Chindwin River joining in.

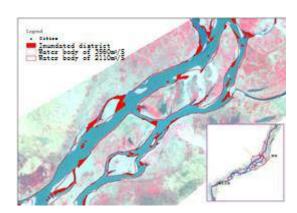
Runoff change in Low Flow Period after dam establishment

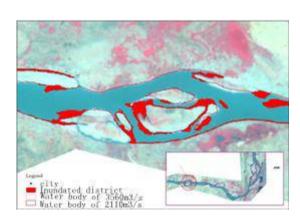
- The average runoff in Myitkyina can increase by 18.1%, in Mandalay 14.9%, and it can increased by 10% when met the afflux of Chindwin River.
- Impact on runoff in low flow period is greater than that in high flow period. increasing the runoff of Irrawaddy River in low flow period and mitigating problems of midstream and downstream, such as irrigation, shipping and tourism

- Chindwin River is the main water source for the middle and lower reaches, together with the Shweli and Nandu River, and so on, flowing into the Irrawaddy River, The impacts of the hydroelectric development of the Upper Reaches of Irrawaddy River on the Lower Reaches is very small.
- Specially, the impact in High Flow Period is very little, Myitkyina monthly average runoff will decrease 3.42%, decrease about 1% after Chindwin River joining in; In Low Flow Period, The average runoff in Myitkyina can increase by 18.1%, in Mandalay 14.9%, and increase by 10% when meet the afflux of Chindwin River;
- After the completion of the Myitsone reservoir, although the downstream runoff, flow rate will change compared with the natural state, but the runoff tends to be uniform during the year, and will have a positive effect on irrigation, shipping, tourism of the middle and lower reaches and prevent seawater backflow.

4.2 Analysis on history flooding in agricultural region based on remote sensing

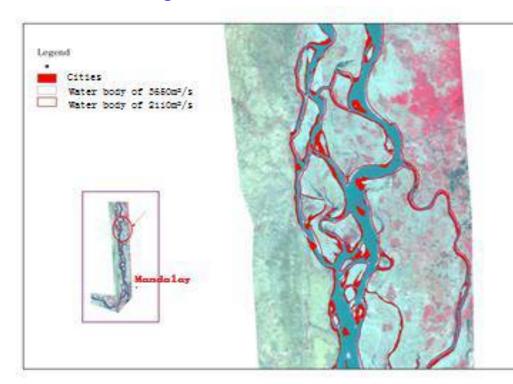

Analysis of hydrological inundation in agricultural area


- Based on the simulation results and designed report of the reservoir operation in the dry season, determined the flow in dry season and twice of it.
- By comparing the measured daily runoff of the Myitkyina station in 2010 and 2011, sifted and determined specific dates when the measured rate of flow was similar with different reservoir regulation water levels.
- Directed by the above dates, valid remote sensing images (HJ data,2 images) are sifted and downloaded to establish simulation analysis data sequence used for inundated range under different reservoir regulation water levels.
- Based on the derived inundated range under different reservoir regulation water levels, impacts of discharge water volume of the dam in dry season on middle and lower agricultural planting regions were evaluated.


4.2 Analysis on history flooding in agricultural region based on remote sensing

Analysis of hydrological inundation in agricultural area

Category	Day flow	Water area	Inundated area	Inundated type
HJ20101214	2110m ³ /s	4235.63km ²		
HJ20100412	3560m ³ /s	4527.55km ²	346 km^2	bottomland



4.2 Analysis on history flooding in agricultural region based on remote sensing

Analysis of hydrological inundation in agricultural area

- Under the condition that the average daily flow is two times of the discharge flow of the reservoir in dry season, the inundated land area of the middle and the lower basin is about 346 km², basically include bottomland within the channel and along the two sides, accounts for 3% of the bottomland in the basin.
- It will provide sufficient water source to irrigation of downstream agricultural region in dry season, thereby realizing stable yield and income increase of crop cultivation.

4.3 Impacts on the agriculture and irrigation

- According to the results of remote sensing survey of land use / land cover in Irrawaddy River Basin, farmland is mainly distributed in the middle and lower reaches;
- □ The upper reaches of Myitsone to Mandalay basically have no irrigation facilities, and the upstream hydropower development has no impact on the irrigation water.
- Based on the hydrology simulation, there are Shweli and Nandu River, and so on flowing into the Irrawaddy River below the Myistone, providing enough water for the middle and lower reaches' farmland irrigation.
- Although the flow will increase under the reservoir operation in the dry, basically there will not have impact on the farmland.
- □ The changing of farmland in the Irrawaddy River delta in recent 40 years shows that, human activities should always be the main factor for the evolution of the delta. the upstream hydropower development will have very little impact on the farmland.

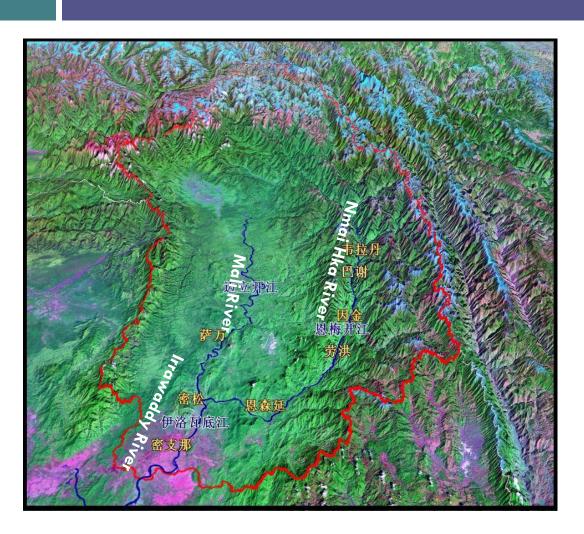
MAIN WORKS:

- Analysis of the current runoff of Irrawaddy River Basin
- Remote Sensing Survey on Land Utilization
- Change of the natural circumstances of Irrawaddy river basin
- Impact of Hydroelectric Development of the Upper Reaches of Irrawaddy River on the Lower Reaches
- Flood control benefits of Hydroelectric Development of the Upper Reaches of Irrawaddy River

Floods occurred frequently in Irrawaddy river have caused large damages

		_		_
Floods location	Safety level (cm)	Flood water level (cm)	Flood Duration	year
Ayeyarwady				
Hintheda	1342	1582	23 Days 12Hrs	1966
Chauk	1450	1532	12 Days 12Hrs	1974
Minhu	1700	1982	17Days 12Hrs	1974
Aunglan	2550	2737	15Days	1974
Pyay	2900	3025	13Days	1974
Myitkyina	1200	1411	4 Days 12Hrs	1979
Katha	1040	1154	7Days 6Hrs	1979
Bhamo	1150	1338	8Days 2Hrs	2004
Mandalay	1260	1382	16 Days	2004

How to protect the Myanmar people from flood disasters?


Cninawin				
Homalin	2900	3107	18Days 6Hrs	1968
Mawlaik	1230	1608	15Days 12Hrs	1976
Hkamti	1360	1771	16Days 6Hrs	1991
Kalewa	1550	1920	10Days 12Hrs	2002
Monywa	1000	1099	9Days 6Hrs	2002

Current Status of Irrawaddy River Basin Flood Control System

SN	Item	Current Status
1	Reservoir	No control reservoirs at the main stream reservoirs built at tributaries, with no flood control storage
2	Embankment	Most are embankment, low elevation, as well as low flood control capacity
3	Spillway	Many tributaries in the downstream Insufficient discharge capacity
4	Hydrological monitoring	since 1950s and 1960s rainfall, flow and water level
5	Institution of basin management	Not established yet, nor river basin flood forecasting system

Hydropower:

Mainly concentrated in upper reaches of Myitkyina

Nmai Hka and Mali Hka:

High drop, large water yield, abundant water resources

Suitable for constructing cascade hydropower station.

Total energy: 188.3 billion kW•h

3D map of upper stream of Irrawaddy River

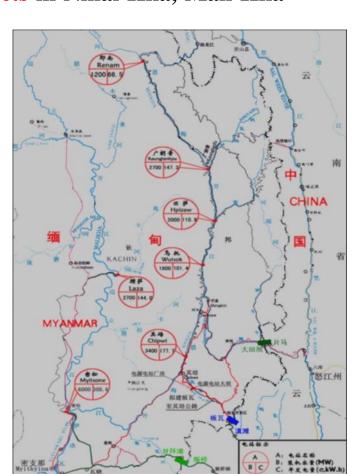
Project overview

Hydroelectric project: 7 cascade hydropower projects in Nmai Hka, Mali Hka

and the main stream:

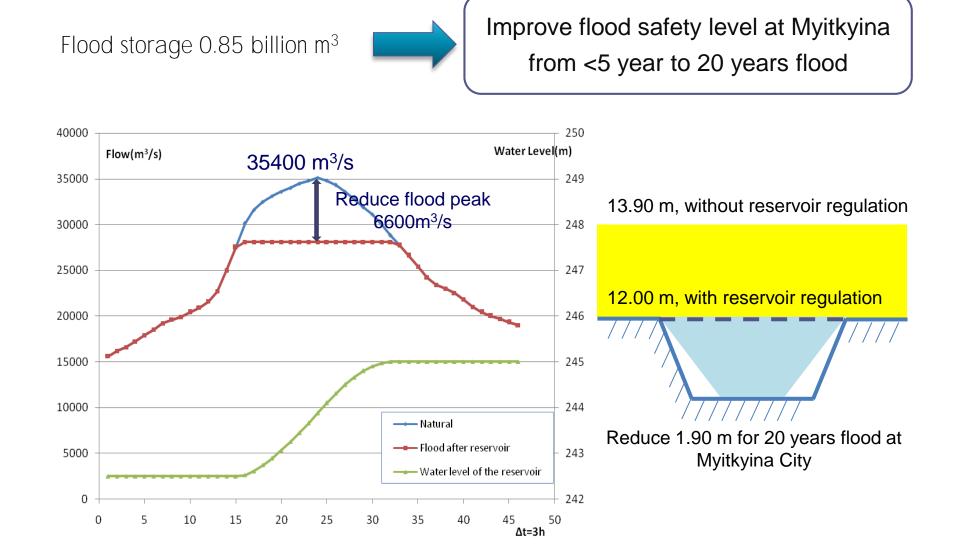
■Renam (1010m, the 3rd batch of projects)

•Kaunglanhpu (875m, the 2nd batch of projects)


•Hpizaw (665m, the 2nd batch of projects)

•Wutsok (525m, the 2nd batch of projects)

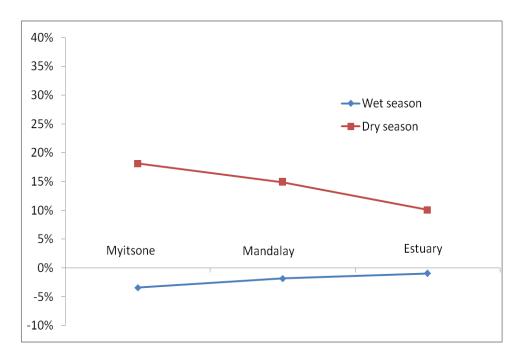
Chipwi (400m, the 1st batch of projects)


■Myitsone (245m, the 1st batch of projects)

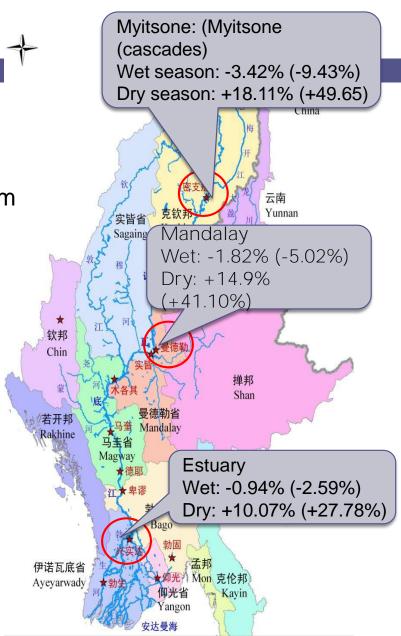
■Laza (370m, the 2nd batch of projects)

Design parameters of Myitsone hydropower station

Descr	Unit	Parameter	
Normal v	m	245	
Flood co	ntrol level	m	242.5
Dead wa	ater level	m	230
Storage capacity belo	ow normal water level	Billion m ³	12.072
Dead stora	ge capacity	Billion m ³	7.569
Regulated sto	orage capacity	Billion m ³	4.503
Storage o	coefficient	%	2.8
Installed	capacity	MW	6000
Comnibed operation of	Guaranteed output (P=90%)	MW	1244
Myitsone and Chipwi hydropower stations Average annual energy outpu		Billion kW h	29.4
Combined operation of all	Guaranteed output (P=90%)	MW	1722
cascade hydropower stations	Average annual energy output	Billion kW h	30.86



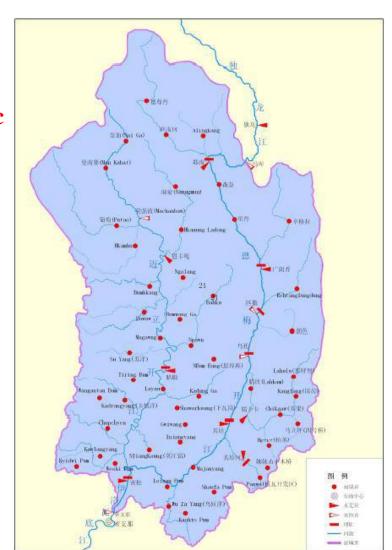
5. Flood prevention benefits of hydroelectric projects in upper stream

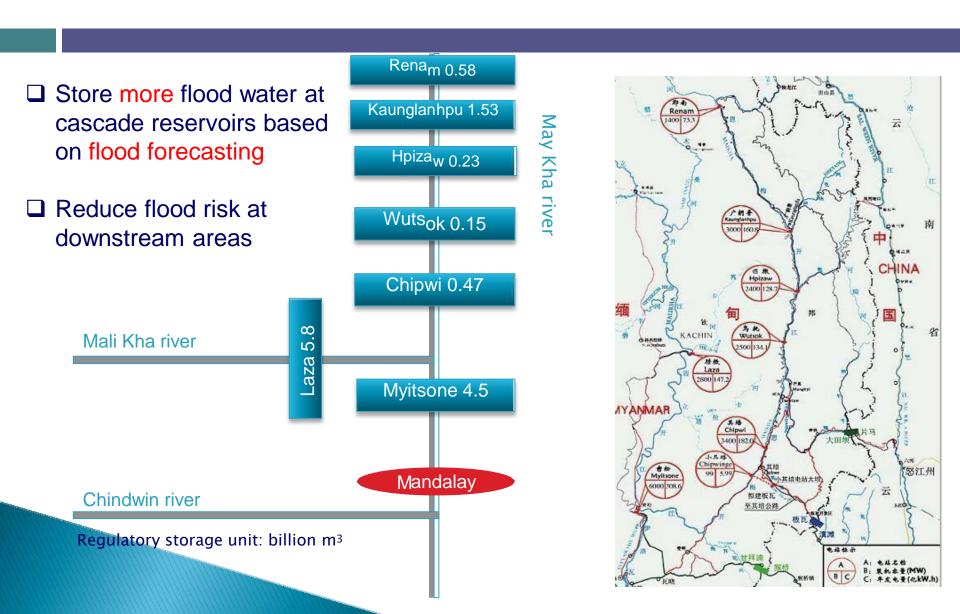

of Irrawaddy Basin

- Store water in wet season, discharge in dry season
- ☐ Impacts decrease from upstream to downstream

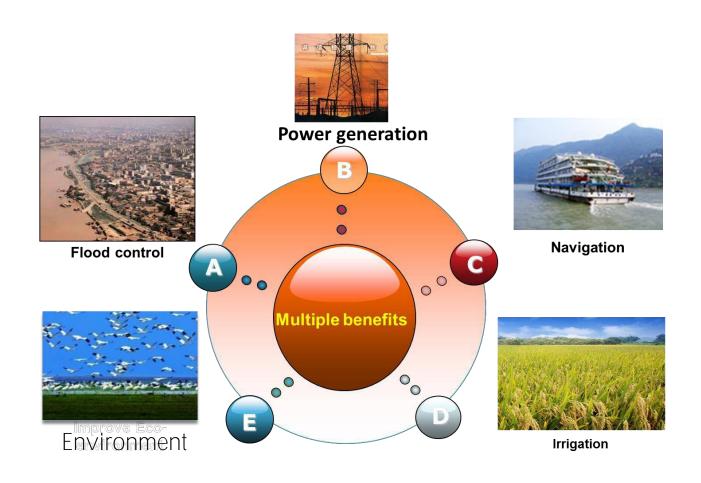
Impacts to the runoff reduces downstream-wards

Flood prevention benefits for the upper stream of Irrawaddy River


Meteorological hydrology survey and automatic measuring


1 center station7 sub-center stations,24 automatic meteorological stations84 precipitation stations.

Flood forecasting and warning system will greatly improve the flood control capacity.



- ☐ Improve the national **power** supply situation & enhance energy structure with clean energy.
- ☐ Meet the requirement of No. 4 of the **12 economic strategies**: development priority goes to construction of infrastructures such as electricity supply, transportation, harbors etc....

THANK YOU!

