

Energy Efficiency & Renewable Energies in Myanmar's Textile Industry Production

Workshop - Knowledge Sharing Activity UMFCCI Building, Yangon October 25th, 2017

Prof. Dr.-Ing. Gerhard Schories
Head of Institute, TTZ Bremerhaven

Mirko Hänel Head R&D, TTZ Bremerhaven

With financial support of the **German Federal Ministry for Economic Cooperation and Development (BMZ)**

Table of Content

- Introduction: Energy in Myanmar and Textiles Production
- 2. Energy Efficiency: Electricity and Thermal Energy
- 3. Renewable Energies

Table of Content

- 1. Introduction: Energy in Myanmar and Textiles' Production
- 2. Energy Efficiency: Electricity and Thermal Energy
- 3. Renewable Energies

Introduction – Energy in Myanmar

65 % of primary energy is biomass based, 97 % of it for residential purposes

Introduction – Energy in Myanmar

Electricity & Heat Production 2015 [GWh]

74,7 % of all electricity production is hydropower

Low electrification rate (27 %), especially in rural areas

Electricity & Heat Utilisation 2015 [GWh]

Introduction – Energy in Textiles Production

According to the Asian Regional Research Program in Energy, Environment & Climate (ARRPEEC) survey, the energy consumption for a textile industry is given in the table below.

Section	Energy Consumption
Spinning	3.0 – 3.5 kWh/kg of yarn
Weaving	2.9 – 3.1 kWh /meter of fabric
Knitting	0.09 – 0.2 kWh/kg of fabric
Dyeing	0.04 – 0.15 kWh/kg of fabric
	3.0 – 7.0 kWh steam/kg of fabric

Introduction – Energy in Textiles Production

Own findings:

Section	Energy Consumption
Spinning	2,5 kWh/m
Weaving	2.9 – 3.1 kWh /meter of fabric
Knitting	0,02 – 0,35 kWh/m (0,11 kWh/kg)
Dyeing	0,3 - 1,1 kg/m
	0,15 t steam/kg of fabric

4:30

5:00

5:30

6:30

7:00

Energy Measurement - Process

Oven - Power consumption and temperatur: no-load losses

12:00

11:30

Uhrzeit

12:30

13:00

13:30 14:00

14:30

15:00 15:30

16:00

16:30 17:00 17:30

10:00

Table of Content

- Introduction: Energy in Myanmar and in Textiles Production
- 2. Energy Efficiency: Electricity and Thermal Energy
- 3. Renewable Energies

Energy Measurement - Devices

Energy Efficency Solutions for Compressed Air Systems

- 1.: Measure actual consumption! (evaluation)
 How much money is spend by the system
 No Load & Leakage Losses
- 2.: Pressure level
 -1 bar = 6 8 % less Energy consumption
- 3.: Losses in the Compressed Air System Leakage, Design, Fittings
- 4.: Waste Heat Recovery?
- 5.: Maintenance of filter etc. Also the temperature of the inlet-air
- 6.: Reduce operation time
 Shut down the compressor when not neded!
- 7.: Check the machines where the compressed air is used

Motor Efficiency

When buying new motors: Buy efficient ones (servo drives)! Old motors have an efficiency of approx. 85 % - new motors up to 95 % for 7,000 h/a and a 5,5 kW-motor: -3,850 kWh/a

Manual in-house re-winding of burnt motors is a common practice, but decreases the efficiency

Ironcore Stator Rotor Windage Stray load Total losses resistanceresistance & friction losses 7.6% Input power 100% Output power 92.4%

How motors lose efficiency

Soft Starters

Soft starter temporarily reduce the load and torque during a motor's startup. High starting torque can cause damage to the mechanical system, high starting current can cause problems in the electrical system

E.g. starting current can be reduced by 50%, motor torque is reduced by 75%

LED instead of conventional bulbs (sales store)

Energy consumption before and after changing conventional bulbs to LED:

Result:

46 % less energy consumption

Thermal Energy

First: Check your system! Is the maximum steam pressure / temperature really needed?

Exhaust gas from 500 kW-Burner (bakery)

ca. 55 m³_{nat. gas} per hour; Required air: approx. 10 m³_{air} per m³_{nat. Gas} approx. 50 kWh/h can be used from the exhaust gas approx. 10 % of installed thermal power (rule of thumb)

Combustion air pre-heating at 500 kW-boiler

Exhaustgas: 300°C -> 120°C => Combustion air -> ca. 200°C

Savings: approx. 27 kWh/h (5,5 %)

Condensate recovery

Whenever possible: recover the condensate!

Heat in condensate represents 20% of the fuel consumed in the boiler.

+ 6°C in feed water temperature => - 1% in energy consumption

Combined Heat an Power Generation

CHP-Process: up to 40 % lower Natural Gas consumption

Table of Content

- Introduction: Energy in Myanmar and in Textiles Production
- 2. Energy Efficiency Measures: Electricity and Thermal Energy
- 3. Renewable Energies

Renewable Energies

Renewable energy sources relevant for Myanmar:

Hydropower

Biomass (mainly for residential purposes)

Solar energy (thermal energy and photovoltaic)

•Wind?

Renewable Energies (Solar Energy)

Solar energy for production of (process) heat and electrical power

- Average sunshine duration per day in Myanmar: 5 h
- Solar air heaters may be used in the drying of yarn, processing, and finished clothes.
- Solar energy potential in Myanmar: 51,973.8 TWh/a
- Decentralised solutions

Renewable Energies (Solar Thermal)

The hot water requirement for soaping, washing, boiler feed, dyeing machines, and low-temperature processes can be provided by selectively coated systems.

Solar concentrators such as parabolic trough collectors could be used to provide low-pressure steam for bleaching, starch preparation, drying and curing of processe or printed cloth.

Solar air heaters may be used in the drying of yarn, processing, and finished clothes.

Renewable Energies (Photovoltaics)

Promotion of **R**enewable **E**nergy (PRE): introduction / presentation of photovoltaic energy generation in Bangladesh: Training-Center with PV system 220 single panels, each 90 Wp, 230 m², measurement and recording system

Approx. 17 MWh/a

48 kWh/d (0,22 kWh/d·m²)

Renewable Energies (Photovoltaics)

Murugan Textiles (India) now runs nearly 100% of its machinery on renewable energy

- Produces 25% of the electricity requirement through solar, and the rest though wind energy.
- Projected Cost Saving of INR 11 Crores in 25 years
- Estimated Energy Generation: 3 million kWh/a
- CO2 displacement: 2,567 t/a
- 10 acres of land space saved
- Accelerated deprecation
- Low break-even period of 6 years
- Fixed energy cost for 25 years

Specifications:

System Size: 2,000 kWp

• Roof Area: 18,850 m²

• Solar Power Plant Setup: 700kW on 1 rooftop; 650 kW each on 2 rooftops

Modules: Crystalline; 245 Wp & 250 Wp

• Inverter: 30 kW; 57 nos. 11

Renewable Energies

Questions:

- Security of energy supply (power cuts)?
- Energy consumption monitoring?
- Under which conditions measures for increased energy efficiency would be implemented (legal requirements, costs, demand from buyers, etc.)?
- Financing conditions for investments (loans available, interest rate)?
- Other obstacles?

Thanks for your attention!

Prof. Dr.-Ing. Gerhard Schories

Head of Institute

Adress: Am Lunedeich 12

D-27572 Bremerhaven

Phone: +49 (0)471 80934-102 Fax: +49 (0)471 80934-199

Email: gschories@ttz-bremerhaven.de

Web: www.ttz-bremerhaven.de

References

- 1. http://agris.fao.org/agris-search/search.do?recordID=US201500126065
- 2. https://www.energystar.gov/sites/default/files/buildings/tools/EE Guidebook for Textile industry.pdf
- 3. https://link.springer.com/chapter/10.1007/978-3-7091-0109-4_13
- 4. https://oecotextiles.wordpress.com/2009/06/16/what-is-the-energy-profile-of-the-textile-industry/
- 5. http://www.logicladder.com/blog/soft-starter-easy-motor-start-and-energy-saving
- 6. https://energy.gov/energysaver/led-lighting
- 7. https://www.forbesmarshall.com/fm_micro/news_room.aspx?Id=seg&nid=121
- 8. http://www.engineerlive.com/content/why-waste-heat-recovery-so-important
- 9. http://www.buyinsulationproductstore.com/blog/why-you-need-to-insulate-steam-condensate-return-line-pipes/
- 10. https://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=8&cad=rja&uact=8&ved=0ahUKEwjAvM2F1003VAhWF0hoKHeYBBXEQFgg8MAc&url=http%3A%2F%2Fwww.mdpi.com%2F1996-1073%2F10%2F3%2F383%2Fpdf&usg=AFQjCNHR6KbkThnz7qTAkgJXxIQyoyru9Q
- 11. http://www.tatapowersolar.com/Projects/largest rooftop solar plant in South India